
REVIEW

Genetic causes of spermatogenic failure

Annelien Massart1,2, Willy Lissens1,2, Herman Tournaye3,4 and Katrien Stouffs1,2

Approximately 10%–15% of couples are infertile, and a male factor is involved in almost half of these cases. This observation is due in

part to defects in spermatogenesis, and the underlying causes, including genetic abnormalities, remain largely unknown. Until

recently, the only genetic tests used in the diagnosis of male infertility were aimed at detecting the presence of microdeletions of the

long arm of the Y chromosome and/or chromosomal abnormalities. Various other single-gene or polygenic defects have been proposed to

be involved in male fertility. However, their causative effects often remain unproven. The recent evolution in the development of

whole-genome-based techniques and the large-scale analysis of mouse models might help in this process. Through knockout mouse

models, at least 388 genes have been shown to be associated with spermatogenesis in mice. However, problems often arise when

translating this information from mice to humans.
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INTRODUCTION

Infertility, defined as the inability to conceive after at least 1 year of

regular and unprotected intercourse, affects approximately 10%–15%

of couples.1,2 It is estimated that a male factor is partially responsible

for the fertility problems in approximately half of the couples. In this

review, we will focus on those cases where spermatogenesis is deficient.

Problems during spermatogenesis are reflected in a lower or absent

production of spermatozoa and are described by routine semen ana-

lysis using terms such as ‘azoospermia’, ‘oligozoospermia’, ‘terato-

zoospermia’ or ‘asthenozoospermia’, or a combination of the last

three (‘oligoasthenoteratozoospermia’). Because the main objective

of this paper is to discuss ‘spermatogenic failure’, we focus here on

non-obstructive causes of male infertility and not on patients in whom

sperm cells are produced but fail to reach their destination, i.e.,

obstructive azoospermia.

The underlying cause of these abnormalities in sperm production

can either be acquired, congenital, or both. Currently, it is estimated

that in approximately 40% of men, the diagnosis remains to be eluci-

dated.3 In view of assisted reproductive techniques, it is especially

important to gain information about the genetic causes of male infer-

tility, as these defects can be transmitted across generation(s).

ROUTINE TESTS

Currently, routine genetic analyses in the clinical diagnosis of non-

obstructive azoospermia or oligozoospermia are limited to the

investigation of the presence microdeletions of long arm of the Y

chromosome (Yq) and/or chromosomal abnormalities. One of the

first genetic tests to be performed in patients with severe idiopathic

male infertility is karyotype analysis. Karyotype abnormalities are

detected in ,5% of patients with fertility problems, and this

prevalence increases to .13% when only considering men with

azoospermia.4–6 Most of the chromosomal abnormalities involve the

sex chromosomes, with Klinefelter syndrome (47,XXY) being the

most commonly detected karyotype abnormality in infertile men.7

The vast majority of patients with the non-mosaic form of

Klinefelter syndrome are azoospermic. Yet, a recent review showed

that mature spermatozoa can be detected in ,44% of these patients.8

It is suggested that some foci with residual spermatogenesis might be

present and that these foci are derived from normal 46,XY spermato-

gonia.9,10 Multiple studies have also shown that the majority of sperm

cells have a normal haploid chromosomal content.10,11

Besides numerical abnormalities, structural defects are also detected

5–10 times more frequently in infertile men.4,12 The formation of

normal bivalents during meiosis is disrupted in patients with struc-

tural abnormalities (mainly with respect to translocations), leading to

the expectation of impaired meiosis and a maturation arrest of sper-

matogenesis. However, in most of the patients with structural changes

in the chromosome structure, oligozoospermia is observed. Therefore,

it is also not surprising that the frequency of Robertsonian transloca-

tions, reciprocal translocations and inversions is higher in men with

oligozoospermia compared with azoospermic men and men in the

general population.12

It is also well known that Yq microdeletions are associated with male

infertility. In 1992, Ma et al.13 reported the first Yq microdeletions.

Since then, over 90 papers have been published describing the fre-

quency of Yq microdeletions in different patients and population

groups. A re-evaluation of the literature, including .13 000 infertile

men, showed that the prevalence of Yq microdeletions is ,7.4%. In an

azoospermic population, the prevalence is higher (9.7%), while in

oligozoospermic men, the prevalence is 6.0% (Table 1).

The Yq contains three ‘azoospermia factor (AZF)’ regions: AZFa,

AZFb and AZFc. Deletions of the complete AZFc region are most
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frequently detected (69%), followed by deletions of the AZFb region

(14%) and deletions of the AZFa region (6%) (Figure 1). However,

some papers report aberrant deletion patterns that were not con-

firmed. Consequently, the actual frequencies of AZF deletions in

different patient groups might be slightly smaller, compared to the

numbers deducted from all published papers. Furthermore, at least 12

AZFa1b deletions were reported. These deletions cannot be explained

from the repeat structures present on the Yq, and their relevance

remains doubtful. However, not all of the Yq microdeletions can be

explained by non-allelic homologous recombination.14

The current guidelines for the detection of Yq microdeletions

recommend the use of two markers in each AZF region in two multi-

plex PCR reactions. Each PCR reaction also has to include a marker for

sex-determining region Y (SRY), located on the short arm of the Y

chromosome, and a marker for ZFX/ZFY, a gene located on the X and

Y chromosomes.15 Furthermore, for each test, positive (normal male),

negative (normal female) and no template (water) controls should be

included.

Deletions encompassing the complete AZFa or AZFb region are

always associated with the complete absence of mature spermatozoa

upon testicular biopsies. At the testicular level, the majority of the

patients with an AZFa deletion have a Sertoli cell-only syndrome,

while the most common phenotype among patients with an AZFb

deletion is a maturation arrest of spermatogenesis.16 For both patient

groups, no sperm cells are left in their testis. Consequently, the dia-

gnosis of an AZFa or AZFb deletion has important consequences for

adequate counselling of the patients; a testicular biopsy is unnecessary

because of the absence of sperm cells for intracytoplasmic sperm injec-

tion (ICSI). One rare exception has been described in which the com-

plete AZFb region was absent in a severe oligozoospermic man.17

However, it is interesting to note that testicular sperm extraction in

this man was unsuccessful in retrieving spermatozoa, further under-

lying the negative predictive value of the complete AZFb deletion for

testicular sperm retrieval in azoospermic men.

The complete absence of the AZFc region, in contrast, causes a

more heterogeneous phenotype, ranging from azoospermia to severe

oligozoospermia (,5 million spermatozoa per ml). We estimated that

spermatozoa could be found in approximately 70% of patients with an

AZFc deletion.18 Consequently, for these patients, ICSI remains pos-

sible. Because sons conceived after ICSI have a high chance of having

impaired spermatogenesis, appropriate genetic counselling is neces-

sary to explain the consequences of ICSI and to inform these men of

the possible alternatives or additional treatments, such as pre-

implantation genetic diagnosis to select female embryos.

Screening for the presence of gr/gr deletions, which are partial dele-

tions of the AZFc regions, is not performed in most of the routine

genetic testing laboratories. Other reports, including one from our

group, have shown an increased incidence of gr/gr deletions in men

with fertility problems.19–21 However, these gr/gr deletions are also

detected in men with normal semen parameters and should therefore

be considered more as a risk factor for male infertility rather than a

causative factor. Besides these gr/gr deletions, which are associated

with decreased sperm parameters, other partial deletions can be

detected on the Y chromosome.22 These include b1/b3 deletions and

b2/b3 deletions, which are presumably neutral changes. Furthermore,

duplications and other structural changes are observed in the AZFc

region of the Y chromosome.22 From several publications, it is obvious

that the distribution of these alterations is not equal among different

populations,21,22 which makes the interpretation of the consequences

of these changes a challenge.

SINGLE-GENE DEFECTS VERSUS POLYGENIC CAUSES

Until recently, single-gene defects were the focus of most of the pub-

lished studies. However, it is obvious that in some of the patients, a

combination of mutations or polymorphisms might cause fertility

problems. Potentially, a combination of congenital/genetic and envir-

onmental factors might eventually be recognized as the cause of fer-

tility problems. Yet, the number of patients affected by a single-gene

defect remains unclear. Table 2 gives an overview of genes that have

been tested by one or more research groups. However, the majority of

these studies fail to identify a mutation that is associated with the

examined phenotype.

Single-gene defects

We believe that, especially in men with ‘well-defined’ and specific

defects during sperm production, mutations in a single-gene might

be responsible for the observed phenotype.

In this respect, rare cases with a well-defined sperm abnormality,

such as globozoospermia or macrocephalic sperm cells, are interesting

subjects for study. Indeed, the mutations in these patient groups have

already been reported. In two families with multiple infertile men

caused by globozoospermia, Dam et al.23 and Liu et al.24 detected

mutations in the SPATA16 (spermatogenesis associated protein 16)

and PICK1 (protein interacting with c kinase 1) genes, respectively.

Dam et al.23 detected a homozygous mutation in the SPATA16 gene in

three brothers of an Ashkenazi Jewish family. This mutation consists

of an amino-acid substitution and confers the removal of a splice site.

The subsequent screening for mutations in the SPATA16 gene in 29

patients with globozoospermia failed to identify other changes in this

gene. The SPATA16 gene is presumably involved in the formation of

the acrosome. It was observed that this protein translocates from the

Golgi to the acrosome during spermiogenesis.25 In the second study

by Liu et al.,24 a potential homozygous mutation was detected in

the PICK1 gene of a single patient with globozoospermia from

Table 1 Frequency of Yq microdeletions in patients with azoospermia

or oligozoospermia. The group total also includes patients with

undefined or unclassified semen parameters

Total Deletions %

Azoospermia (n) 3157 305 9.7

Oligozoospermia (n) 3473 209 6

Total (n) 13 097 969 7.4

Abbreviation: Yq, long arm of the Y chromosome.

Figure 1 Distribution of Yq microdeletions among the three AZF regions. AZF,

azoospermia factor; Yq, long arm of the Y chromosome.
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consanguineous parents. This change was absent in 100 normozoos-

permic Chinese controls.24 Moreover, PICK1 is also presumably

involved in the formation of the acrosome.26 Although the gene

showed a ubiquitous expression pattern, Xiao et al.26 showed that

the major abnormality in Pick12/2 mice was infertility. In two pub-

lications concerning patients with globozoospermia, a homozygous

deletion was detected on chromosome 12 encompassing the DPY19L2

gene.27,28 One paper described a 200-kb deletion in a consanguineous

Jordanian family and three unrelated patients,28 while the second

research group detected the homozygous deletion in 15 out of 20

globozoospermic men that were tested using single-nucleotide poly-

morphism (SNP) arrays.27 Additionally, in patients with large-headed

polyploid multiflagellar sperm cells, a mutation was detected in the

AURKc (aurora kinase c) gene, which is involved in chromosome

segregation and cytokinesis. The typical phenotype of large headed

sperm cells is especially detected in North African men, where the

carrier frequency of the mutation is estimated to be 1/50.29,30

Visser et al.31 analysed 30 patients with isolated asthenozoospermia

for the presence of mutations in nine genes that were selected on the

basis of the phenotype observed in knockout mouse models. They

identified four CATSPER genes, which form the ion channel essential

for the calcium influx during sperm capacitation. The genes GAPDHS,

PLA2G6 and ADCY10 code for enzymes specifically expressed in sperm,

and SLC9A10 is a sodium hydrogen exchanger.31 A total of 10 potential

mutations were detected in seven of these genes (ADCY10, AKAP4,

CATSPER1, CATSPER2, CATSPER3, CATSPER4 and PLA2G6), yet

all of the changes were heterozygous alterations. However, three

patients had multiple changes in the investigated genes. Previous studies

reported a man with partial deletions in the AKAP3 and AKAP4 genes

that caused isolated asthenozoospermia.32 In addition, mutations in the

CATSPER1 gene and deletion of the CATSPER2 gene had been prev-

iously associated with asthenozoospermia.33–35 However, in most of the

patients, a reduced sperm number and an increased number of mor-

phological abnormal spermatozoa were also detected.

Another interesting patient group is men with a maturation arrest

of spermatogenesis. Spermatogenesis can arrest at different stages,

although primarily, an arrest during meiosis is observed. Therefore,

abnormalities in genes essential for meiosis are possible candidates for

the defect in spermatogenesis. Yet, as suggested above, chromosomal

abnormalities can also be the underlying cause of the failure to com-

plete meiosis. This idea emphasizes the need to perform karyotype

analysis before or in parallel with testing for the presence of gene

mutations. Different groups have investigated the involvement of

the SYCP3 (synaptonemal complex gene 3) gene in male infertil-

ity.36–38 Miyamoto et al.36 detected a single change in two patients,

which was predicted to alter the function of the protein. Two studies

have investigated the SYCP3 gene for the presence of mutations in

association with recurrent miscarriages.39,40 Three patients (two

women and a man) were described with changes in the SYCP3 gene

that were potentially linked to their problems, i.e., maintaining a

pregnancy, which might be due to an abnormal chromosomal consti-

tution of the foetus.39,40 The TAF7L gene has also been studied in

relation to the maturation arrest of spermatogenesis or azoosper-

mia.41,42 In the first study, four non-synonymous changes were

detected with equal frequencies in the patient and control groups.41

The second study identified three of these four changes in their patient

population and concluded that one of the changes present in exon 13

could be linked with azoospermia. The X-linked transcription factor

TAF7L translocates from the cytoplasm to the nucleus during mei-

osis,43 suggesting a function during meiosis. Yet, subsequent studies in

mice showed that sperm cells were still produced, although at a lower

rate, with abnormal morphology and motility.44 This result indicated

that patients with oligoasthenoteratozoospermia would have been a

more appropriate group to screen.

Table 2 Genes tested with consideration of human non-syndromic spermatogenesis or sperm defects, with special emphasis on genes tested at

the DNA level

Patients Phenotype One study Multiple studies References

Azoospermia Maturation arrest of

spermatogenesis

DNMT3L, FKBP6, FKBPL, MEI1,

MSH4, STRA8, TAF7L

RBMY a, SYCP3 36–39, 41, 45, 74, 75

Sertoli cell-only syndrome BPY2 a, DBY a, USP9Y a 76–83

Not defined ART3, PRDM9, SOHLH1,

TAF7L, ZNF230

42,85–87

Abnormal semen parameters Teratozoospermia CSNK2A2, GOPC, HRB, PICK1,

SPATA16, eNOS

AURKc, DPY19L2 23, 24, 27–30, 85

Asthenozoospermia ADCY10, CATSPER3/4, DNAI1,

DNAH5, DNAH11, eNOS, HFE,

PLA2G6, SPAG16, TNFalpha A,

TNFR1, TNFR2

AKAP3/4, CATSPER1/2 33–37, 89–96

OAT or not defined DNMT3b, eNOS, HIWI2/3, OAZ3,

PON1/2, SCA1

CDY1 a, CYP1A1, DAZ a,

DAZL, ESR1/2, GSTM1,

GSTT1, GSTP1, HSFY a,

KLHL10, POLG, PRM1/2,

TNP1/2, TSPY a

19, 97–118

Infertile men (undefined or

mixed)

FKBPL, GAMT, H1FNT, H2BFWT,

HFE, HSP90, MS, MTR, MTRR,

NANOS2, NANOS3, NR5A1,

NRIP1, PUM2, NALP14, SLC6A8,

TSSK2, TSSK6, UTP14C

APOB, AR, BOULE, c-KIT,

KITLG CYP19A1, CREM,

DDX25, FAS, FASLG, FKBP6,

FSH, FSHR, LH, LHCGR,

MTHFR, SHBG, UBE2B,

USP26, YBX2 (5MSY2)

19, 102, 119–151

Abbreviation: OAT, oligoasthenoteratozoospermia.
a These genes are located in the AZF regions on the Y chromosome. For some of the Yq genes, gene-specific deletion and/or mutation screening has been performed (USP9Y,

DBY). For other genes, this method of screening was impossible because of the multicopy nature of the genes; for some of these genes, the copy number has been determined

in infertile men.152
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In another study, Sato et al.45 looked at the presence of mutations in

the meiosis defective 1 (MEI1) gene. This gene was selected based on

knockout mouse models that showed a meiotic arrest due to impaired

chromosome synapsis.46 Two synonymous SNPs were potentially

associated with maturation arrest of spermatogenesis in Americans

of European origin but not in Israelis. One SNP, resulting in a single

amino-acid change, was detected in one patient and not in the con-

trols. However, due to the low number of patients and controls ana-

lysed, the physiological meaning of this amino acid change could not

be proven, because it failed to reach statistical significance.

These studies in patients with maturation arrest of spermatogenesis

illustrate some of the pitfalls and obstacles that should be considered

when investigating genetic causes of spermatogenesis defects or when

drawing conclusions from the published studies.

1. The number of patients analysed is often too low to draw solid

conclusions. The observation is often intrinsic to patient groups

under investigation; it is hard to find large numbers of patients

with a specific phenotype.

2. The ethnicity of patients and controls should match. Some SNPs

are common in certain population groups, but rare or absent in

other groups. However, sometimes it is hard to exclude that

either the patient or the control has ‘foreign’ ancestors.

3. Often, no functional studies have been performed. Therefore, it

is hard to predict the consequences of the observed changes,

especially considering amino acid substitutions.

4. When analysing data, one should also consider the con-

sequence of heterozygous versus homozygous changes. Even

when functional analyses show that the function of a mutant

protein is altered, a second ‘normal’ protein might compensate

for the loss. Compensation has been observed in mouse studies

where heterozygous mice are often fertile. Only a homozygous

knockout of a gene completely disrupts the function of the gene

product.

5. One should also consider that the function of genes might be

different when comparing the mice and humans.

6. Furthermore, in knockout mice, often a large part of the gene

has been removed. Thus, the consequences of a small in-frame

deletion or amino acid substitution might be less severe than

that predicted from the mouse study. This phenomenon was

observed in studies investigating changes in the SYCP3 gene,

where mutations were compatible with fertility (but associated

with miscarriages).39,40 Knockout male mice were completely

sterile, but in these mice, an important fraction of the gene

was missing.47

7. When no knockout mouse studies are available, the phenotype

caused by mutations might be predicted based on the expression

pattern of the gene of interest. Yet again, caution should be

taken. As shown with the TAF7L gene, the observed phenotype

could be less severe than that predicted from the expression

pattern.

From these ‘pitfalls’, it is obvious that even ‘specific’ phenotypes

should be handled with care, and even for these groups, multiple

factors might be involved in the aetiology of the disease. When

analysing unselected groups of patients, it is even more important to

consider the aforementioned difficulties. The number of papers

describing mutations in genes that are clearly associated with the

observed fertility problems in patients remains severely limited.

Polygenic causes

As mentioned above, single-gene defects are especially expected in

patients with a ‘specific’ phenotype. Yet, the majority of patients visiting

fertility clinics for male factor infertility suffer from poor semen para-

meters. For men with unexplained oligozoospermia, it is difficult to

predict whether a defect in a single gene causes the fertility problems.

Indeed, the cause might be multifactorial and include defects in one or

more genes and potentially be combined with environmental factors.

Each factor on its own can be considered as a ‘risk factor’. In extremes,

Sertoli cell-only syndrome (the complete absence of germ cells in the

testicular tissue) could also be caused by an accumulation of risk factors.

Yet in these patients, also single-gene defects can be expected, for instance,

in genes essential to maintain the stem cell pool of spermatogonia.

Two well-studied risk factors are the gr/gr deletions and MTHFR

gene polymorphisms. The gr/gr deletions have already been discussed

in a previous section. We believe that the impact of gr/gr deletions is

dependent on the genetic background and is potentially under the

influence of environmental factors. Consequently, the patients will

still have normal sperm counts or be classified as oligozoospermic.

Therefore, it is essential to gain more insight into these genetic factors

that should be considered as risk factors because the presence of a

single, isolated risk factor might have only a small influence on sper-

matogenesis. Consequently, when analysing the controls, one might

(incorrectly) conclude that this factor/polymorphism has no influence

on male infertility. It will be an ongoing challenge to map genetic risk

factors that might have an impact on the efficiency of sperm produc-

tion. Again, we should consider the same interpretation errors that are

encountered with the identification of single-gene defects. In particu-

lar, differences in ethnicity should be considered. As with the C677T

SNP, the background in which the MTHFR gene is expressed might be

important for the consequences of the SNP. The MTHFR gene is

essential for folate metabolism. It is suggested that in countries with

a low dietary intake of folates, the homozygous C677T polymorphism

might be associated with male infertility, as folates are essential for

DNA methylation.48 Tüttelmann et al.19 performed a meta-analysis of

eight published studies that showed a clear association between homo-

zygous change and decreased spermatogenesis. Alternatively, some

SNPs might be more common in ethnic subpopulations without

affecting infertility. In the case of gr/gr deletions, it was observed that

these deletions are fixed on the Y haplogroups Q1 and D2b, which are

present in high frequencies in China and Japan, respectively.49–51 It is

supposed that protective mechanisms are present on these Y chromo-

somes that counteract with the gr/gr deletions.

The development of whole-genome approaches, as described in the

next paragraph, will enable the identification of changes in multiple

genes simultaneously and will thus facilitate the identification of poly-

genic causes. Yet, the interpretation of the data will be the most dif-

ficult part of these studies.

IMPLEMENTATION OF NEW TECHNIQUES

The implementation of whole-genome approaches, such as SNP

arrays, array comparative genomic hybridisation analysis and

whole-genome or exome analysis through next generation sequen-

cing, will enable researchers to analyse multiple genes in parallel.

These studies will be useful in identifying polygenic causes and

single-gene defects. This approach also has the advantage of avoiding

the selection bias of genes to be included in studies on (in)fertility. The

current studies are primarily based on what is already known about

genes from mouse studies.
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SNP arrays have already been used in studying familial cases of male

infertility. Dam et al.,23 for instance, were able to identify a mutation in

the SPATA16 gene after minimizing the region of interest through

linkage analysis by SNP arrays. Nevertheless, large families with mul-

tiple fertile and infertile men are difficult to find.

Until now, a single pilot study has been published in which the

authors performed a ‘genome-wide SNP association study’ to identify

SNPs that were linked to male infertility.52 A follow-up study showed

that some of the SNPs might be associated with azoospermia or oli-

gozoospermia.53 Yet, this study failed to identify ‘real causes’ of male

infertility, but rather, identified factors that were only present in infer-

tile males, and not in the controls. These SNPs could be considered as

potential risk factors.

Through array comparative genomic hybridisation, deletions or

increased copy numbers can be detected in the whole genome. The

main limitation of array comparative genomic hybridisation is the

resolution of the platform used, meaning that small rearrangements

might be missed. Moreover, mutations or translocations cannot be

detected. One study described the involvement of copy number varia-

tions in patients with disorders in sexual development.54 Although the

majority of these patients also face fertility problems, spermatogenesis

failure is not the only phenotypic abnormality in these patients.

To our knowledge, whole-exome or whole-genome analysis through

next generation sequencing has not been described in relation to the

study of male infertility. Again, the interpretation of the data will be

difficult. Therefore, it is important to select well-defined and extremely

specific patient groups in which single-gene defects are more likely.

Whole-genome approaches have the advantage that defects can be

detected in genes with an unknown function, thereby avoiding the man-

ual selection of genes based on their known expression pattern or

described phenotype in knockout mouse studies. Whole-genome sequen-

cing techniques also represent a potentially well-suited approach to char-

acterize complex spermatogenic impairment phenotypes resulting from

disturbances in multiple genes. Furthermore, novel insights into epige-

netic mechanisms regulating spermatogenesis might be acquired.

Epigenetic deviations have been shown to be potentially responsible for

male infertility; examples are an abnormal protamine 1/protamine 2 ratio

and aberrant methylation patterns in DAZL and CREM.55,56

First, more insight needs to be gained into the function of the genes

that are involved in spermatogenesis. However, during spermatogen-

esis, numerous genes are expressed under the influence of hormones,

but also of autocrine, paracrine and juxtacrine factors between the

various testicular compartments, making it impossible to model this

process completely in vitro.57 Therefore, many models for studying the

role of genes in spermatogenesis have been used. The mouse is the

model organism of choice for this purpose, mainly because mouse

spermatogenesis is comparable to that in humans. Furthermore, mice

have a short reproductive cycle with large litter sizes, are not expensive

to accommodate and their embryos are easy to manipulate at the

genetic level.58

MOUSE MODELS

The technique primarily used to study a gene function in vivo is the

generation of knockout mouse models, where a gene is inactivated or

‘knocked out’ by replacing or disrupting it (Figure 2). Consequently,

the role of the defective gene(s) can be determined. In the Mouse

Genome Informatics database (http://www.informatics.jax.org/), over

388 knockout mouse models with impaired spermatogenesis are cur-

rently described. The technique to generate knockout mouse models is

based on the reverse genetic approach; the function of a gene can be

predicted by alterations of the expression of a specific gene, followed by

the evaluation of the phenotypic outcome. However, the ablation of a

critical gene can result in unexpected embryonic death, making the

analysis of the role of this gene in spermatogenesis impossible.

Conditional and inducible knockout models can be made to prevent

this. In conditional knockouts, the gene is inactivated only in specific

tissues, using Cre–LoxP or Flp–FRT site-specific recombination sys-

tems. In inducible knockout models, the gene of interest is fused with

an antibiotic sensitive gene such that it will become disrupted when

the antibiotic is administered.59 A recent example using conditional

knockout mice was applied to determine the testicular function of the

transcription factor Gata4 in adult mice.60 Gata4 knockout mice died

from defects in ventral morphogenesis and heart development at embry-

onic day 9.5.61 Therefore, Cre–LoxP recombination in conjunction with

Amhr2–Cre was used to delete the GATA4 gene only in the Sertoli cells,

and consequently, the function could be studied at a later stage.61 At

Figure 2 Scheme of knockout, knockin and gene trapping methodologies. pA, plasminogen activator; SA, splice acceptor; WT, wild type; E, exon.
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6 months, these knockout mice showed decreased sperm counts and

sperm motility, resulting in testicular atrophy and loss of fertility.61

A variant of the knockout approach is the creation of knockin

models in which mutations are introduced in the genome by replacing

the original gene by its mutant version using homologous recombina-

tion (Figure 2).

In the International Knockout Mouse Consortium, different groups

collaborate to mutate all of the protein-encoding genes in the mouse

using a combination of gene trapping and gene targeting in C57BL/6

mouse embryonic stem cells. Gene trapping is a high-throughput

method in which gene trap cassettes are inserted either randomly

across the genome or at a specific site, resulting in gene ablation62,63

(Figure 2). The International Knockout Mouse Consortium includes

the following programs: the Knockout Mouse Project (USA), the

European Conditional Mouse Mutagenesis Program (Europe), the

North American Conditional Mouse Mutagenesis Project (Canada)

and the Texas A&M Institute for Genomic Medicine (USA) (http://

www.knockoutmouse.org/).

A disadvantage of the reverse genetic approach is that prior know-

ledge of the gene’s function is needed, and therefore, only genes with

an expected role in spermatogenesis will be detected. This is not the

case in the forward genetic or phenotypic-driven approach, which

starts with the selection of a model with a phenotype of interest,

and subsequently determines the underlying genetic cause. As des-

cribed above, gene trapping disrupts genes at random. Another for-

ward genetic approach is whole-genome mutagenesis in which high

rates of point mutations are randomly introduced throughout the

whole genome. This approach is primarily performed using the alky-

lating agent N-ethyl-N-nitrosourea (ENU), which causes mutations in

all cells, particularly in premeiotic spermatogonial stem cells. After the

selection of mice with the desired phenotype, the causal mutation can

be identified through linkage analysis, followed by sequencing of the

candidate genes or the currently preferred method of whole-genome

sequencing. Instead of null alleles, single base-pair substitutions are

generated, which adequately reflect the disease-causing mutations that

are predicted in human and can also help in determining critical

domains for protein function. The first large-scale ENU mouse

mutagenesis programmes were implemented at the end of 1996 in

Germany and the United Kingdom.64,65 In 2002, the Reproductive

Genomics Program was set up at the Jackson Laboratory to deve-

lop mouse models of infertility using ENU mutagenesis (http://

reproductivegenomics.jax.org). Currently, 38 models expressing male

infertility have been generated in this programme, and the chromo-

somal location is known for 30 of them.66 Through this program and

in subsequent individual studies aiming to characterize the underlying

genetic defect of the observed phenotypes, several novel genes were

identified that cause male infertility. These genes include Brwd1,

which is necessary for the completion of gametogenesis;67 Capza3,

which is involved in the removal of excess cytoplasm during spermia-

tion;68 and eIF4G3, a translation initiation factor.69 Furthermore,

mutations in Nsun7 result in a rigid flagellar midpiece of the sperm

cells that causes decreased progressive motility70,71 and mutations in

Hei10 impair alignment of the chromosomes at the metaphase plate in

both spermatocytes and oocytes.72

These mouse studies will provide useful information about the

function of proteins involved in spermatogenesis. Furthermore, we

might obtain information concerning the consequences of the muta-

tion or deletion of the corresponding genes. However, as mentioned

above, caution should be taken in translating the results found in mice

to humans. Some biological processes such as the process of the

sperm–egg interaction can be different between mice and humans.73

Furthermore, similar genes could have different functions. Whereas

the knockout of a certain gene results in infertility in mice, the func-

tion of one gene could compensate for another in humans.

CONCLUSIONS

Despite substantial efforts over the last decade, the genetic causes of

spermatogenetic failure still remain largely unknown. It has been esti-

mated that more than 2300 genes play a role in spermatogenesis.59

Mutations in each of these genes could theoretically cause male infer-

tility. Only a few of these genes have been investigated in humans, and

most of the detected alterations could not be demonstrated to cause

infertility. Through the use of knockout mouse models, 388 genes have

already been shown to be involved in spermatogenesis, but translating

these results to humans should be done with care. One reason for this

caution is that a large part of male infertility in humans is not caused

by monogenic homozygotic mutations except for well-defined cases

such as globozoospermia. Considering that thousands of genes are

involved in male fertility, it could be possible that innumerable com-

binations of heterozygous base pair changes or risk factors could cause

male infertility. Thus, the molecular diagnosis of infertility would be

difficult with the current available technologies. The recent evolution

in the development of whole genome-based techniques and the large-

scale analysis of mouse models will hopefully help to identify more

infertility-related mutations and risk factors. In addition, epigenetics

has created a promising avenue in the field of male infertility. The

development of an adequate in vitro human model for spermatogen-

esis would also be helpful.
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